UPT PERPUSTAKAAN

UIN Raden Fatah Palembang

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Admin
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

Artikel Jurnal

Democratizing Artificial Intelligence Imaging Analysis With Automated Machine Learning: Tutorial. (E-Journal)

Thirunavukarasu, Arun James. dkk - Nama Orang;

Deep learning–based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling “hands-on” education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: Journal of Medical Internet Research., Oct. 12, 2023
Deskripsi Fisik
11 lembar; ilus; tabel; chart;
Bahasa
English
ISBN/ISSN
14394456
Klasifikasi
NONE
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol. 25, Issue 1
Subjek
ARTIFICIAL intelligence
Automated Machine Learning
Info Detail Spesifik
artikel elektronik
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Democratizing Artificial Intelligence Imaging Analysis With Automated Machine Learning: Tutorial.
Komentar

Anda harus masuk sebelum memberikan komentar

UPT PERPUSTAKAAN
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?